Wünschel M, Leasure JM, Dalheimer P, Kraft N, Wülker N, Müller O.
Dec 1, 2013
Knee. 2013 Dec;20(6):416-21. doi: 10.1016/j.knee.2013.03.005. Epub 2013 Apr 8.
Abstract:
Background: Posterior cruciate ligament (PCL) retaining (CR) and -sacrificing (PS) total knee arthroplasties (TKA) are widely-used to treat osteoarthritis of the knee joint. The PS design substitutes the function of the PCL with a cam-spine mechanism which may produce adverse changes to joint kinematics and kinetics.
Methods: CR- and PS-TKA were performed on 11 human knee specimens. Joint kinematics were measured with a dynamic knee simulator and motion tracking equipment. In-situ loads of the PCL and cam-spine were measured with a robotic force sensor system. Partial weight bearing flexions were simulated and external forces were applied.
Results: The PS-TKA rotated significantly less throughout the whole flexion range compared to the CR-TKA. Femoral roll back was greater in the PS-TKA; however, this was not correlated with lower quadriceps forces. Application of external loads produced significantly different in-situ force profiles between the TKA systems.
Conclusions: Our data demonstrate that the PS-design significantly alters kinematics of the knee joint. Our data also suggest the cam-spine mechanism may have little influence on high flexion kinematics (such as femoral rollback) with most of the load burden shared by supporting implant and soft-tissue structures.
Keywords: Arthroplasty; Forces; Kinematics; Knee joint; Robotics.